Measuring microscale strain fields in articular cartilage during rapid impact reveals thresholds for chondrocyte death and a protective role for the superficial layer.
نویسندگان
چکیده
Articular cartilage is a heterogeneous soft tissue that dissipates and distributes loads in mammalian joints. Though robust, cartilage is susceptible to damage from loading at high rates or magnitudes. Such injurious loads have been implicated in degenerative changes, including chronic osteoarthritis (OA), which remains a leading cause of disability in developed nations. Despite decades of research, mechanisms of OA initiation after trauma remain poorly understood. Indeed, although bulk cartilage mechanics are measurable during impact, current techniques cannot access microscale mechanics at those rapid time scales. We aimed to address this knowledge gap by imaging the microscale mechanics and corresponding acute biological changes of cartilage in response to rapid loading. In this study, we utilized fast-camera and confocal microscopy to achieve roughly 85 µm spatial resolution of both the cartilage deformation during a rapid (~3 ms), localized impact and the chondrocyte death following impact. Our results showed that, at these high rates, strain and chondrocyte death were highly correlated (p<0.001) with a threshold of 8% microscale strain norm before any cell death occurred. Additionally, chondrocyte death had developed by two hours after impact, suggesting a time frame for clinical therapeutics. Moreover, when the superficial layer was removed, strain - and subsequently chondrocyte death - penetrated deeper into the samples (p<0.001), suggesting a protective role for the superficial layer of articular cartilage. Combined, these results provide insight regarding the detailed biomechanics that drive early chondrocyte damage after trauma and emphasize the importance of understanding cartilage and its mechanics on the microscale.
منابع مشابه
The effect of finite compressive strain on chondrocyte viability in statically loaded bovine articular cartilage.
Recent studies have reported that certain regimes of compressive loading of articular cartilage result in increased cell death in the superficial tangential zone (STZ). The objectives of this study were (1) to test the prevalent hypothesis that preferential cell death in the STZ results from excessive compressive strain in that zone, relative to the middle and deep zones, by determining whether...
متن کاملThe Expression of Signal Regulatory Protein-alpha in Normal and Osteoarthritic Human Articular Cartilage and Its Involvement in Chondrocyte Mechano-transduction Response
Signal regulatory proteins (SIRP) belong to immunoglobulin super family (IgSF) and relate to integrin signaling cascades. It has been shown that SIRPa is expressed in a variety of cells including myeloid cells and neurons. In the present study the expression of this IgSF member in articular chondrocytes was investigated. Methods: Using a panel of anti-SIRPalpha antibodies, immunohistochemistry...
متن کاملStudy of Expression Level of Cartilage Genes in Rat Articular Chondrocyte Monolayer and 3D Cultures using Real Time PCR
Purpose: to compare the expression level of certain genes related to cartilage and non-cartilage tissues at monolayer and alginate cultures derived from rat articular cartilage. Materials and Methods: Articular cartilage was harvested from knee joints of 10 male rats and was digested using enzymatic solution consisting of 0.2% collagenase I and 0.1% pronase. Released chondrocyte were then plate...
متن کاملDepth-Dependent Anisotropy of the Micromechanical Properties of Porcine Articular Cartilage Measured via Atomic Force Microscopy
INTRODUCTION: Articular cartilage exhibits distinct differences in biochemical composition [1] and structure [2] of the extracellular matrix (ECM) with distance from the articular surface. These differences result in depth-dependent biomechanical properties [3, 4, 5] that can have a significant effect on the mechanical environment of the chondrocyte [6, 7]. An additional structural component of...
متن کاملPeriodic rewetting enhances the viability of chondrocytes in human articular cartilage exposed to air.
Desiccation of articular cartilage during surgery is often unavoidable and may result in the death of chondrocytes, with subsequent joint degeneration. This study was undertaken to determine the extent of chondrocyte death caused by exposure to air and to ascertain whether regular rewetting of cartilage could decrease cell death. Macroscopically normal human cartilage was exposed to air for 0, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 48 12 شماره
صفحات -
تاریخ انتشار 2015